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Abstract

Wick-type stochastic coupled KdV equations are researched. By means of Hermite
transformation, white noise theory and modified tanh-coth method, four types of
exact solutions to the stochastic coupled KdV equations are explicitly given.
These solutions include the functional solutions of exponential type, hyperbolic
type, trigonometric type, and quadratic trigonometric type.

1. Introduction

In this paper, we shall explore exact solutions for the following

variable coefficients coupled KdV equations:
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{ut + p(t)uwy, + q(t)vv, + r(t) gy, = 0, (1.1)

Uy + Uyyye — 33UV, =0,

where p(t), q(¢), and r(¢) are bounded measurable or integrable functions
on R,. Random wave is an important subject of stochastic PDEs. Many

authors have studied this subject. Wadati first introduced and studied the
stochastic KdV equations and gave the diffusion of soliton of the KdV
equation under Gaussian noise in [14] and others [5-8, 10, 12] also
researched stochastic KdV-type equations. Xie first introduced Wick-type
stochastic KdV equations on white noise space and showed the auto-
Béacklund transformation and the exact white noise functional solutions
n [17]. Furthermore, Chen and Xie [2-4] and Xie [18-23] researched some
Wick-type stochastic wave equations by using white noise analysis
method. Recently, Ugurlu and Kaya [13] gave the tanh function method,
Wazzan [16] showed the modified tanh-coth method, and these methods
have been applied to derive nonlinear transformations and exact
solutions of nonlinear PDEs in mathematical physics. Many authors
considered nonlinear wave PDEs, say, in two variables

Au, Wy, Uy, Uyps Usys Uggyes --- ) = 0, (1.2)

where A is a nonlinear function with respect to the indicated variables.
Equation (1.2) can be converted to an ODE

B(u, v, u", u",...) =0, (1.3)
upon using a wave variable & = x — ut. Equation (1.3) is then integrated

as long as all terms contain derivatives, where integration constants are
considered zeros. The resulting ODE is then solved by the modified tanh-
coth method [16], which admits the use of a finite series of functions of
the form

M M _
u(w, )= u®) = ) a¥ @)+ Y e, (1.4)
and the Riccati equation

Y' = a+pY +yY2, (1.5)
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where a, B, and y are constants to be prescribed later. The parameter M

is a positive constant that can be determined by balancing the linear term
of highest order with the nonlinear term in (1.3). Inserting (1.4) into the

ODE in (1.3) and using (1.5) will give an algebraic equation in powers of

Y. Since all coefficients of Y* must vanish, this will give a system of

algebraic equations with respect to parameters a; and b,. With the aid
of Mathematica, we can determine aj and b;,. If Equation (1.1) is

considered in a random environment, we can get stochastic coupled KdV
equations. In order to give the exact solutions of stochastic coupled KdV
equations, we only consider this problem in white noise environment. We

shall study the following Wick-type stochastic coupled KdV equations:

{Ut +Pt)oUoU, +Q(t)o VoV, + Rt)o Uy, =0, (1.6)

V, +Vy —3U oV, =0,

and give white noise functional solutions, where “¢” is the Wick product

on the Kondratiev distribution space (S)_;, which was defined in [9],

P(t), Q(t), and R(t) are (S)_; -valued functions.

2. White Noise Functional Solutions
of Equation (1.6)

Taking the Hermite transform of Equation (1.6), we get the
deterministic equations

U,(x, t, 2)+ P(t, 2)U(x, t, 2)U,(x, t, 2) + Q(t, 2)V(x, t, 2)Vye(x, t, 2) + B(t, 2)U e (x, 2, 2) = 0,
Vt(x, t,z)+ Vxxx(x, t,z)— 3(7(x, t, z)\?x(x, t,z)=0,

2.1)
where z = (21, 29, ... ) € (CN )e is a vector parameter.

To look for the travelling wave solution of Equation (2.1), we make

the transformations w(x, ¢, z) = U(x, ¢, 2) = o(&(x, t, 2)), v(x, ¢, 2) =

V(x, t, z) = v(&(x, t, 2)),
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with
t
E(x, t, z) = kx + SJE(T, z)dT +c,
0

where k, s, and c are arbitrary constants, which satisfy ks = 0, /(1, z) is

nonzero function of the indicated variables to be determined. So, Equation

(2.1) can be changing into the form

{Sf(t, 2)9' + kp(t, 2)0¢’ + kq(t, 2)vv’ + E>r(t, 2)o" = 0, 2.2)

si(t, z)v' + k3p" — 3koy' = 0,
where p(t, z) == P(t, 2), q(t, z) = Q(t, ), and r(t, z) := R(t, z). Consider-
ing homogeneous balance between ¢", ¢’ and yy’, " and ¢y’ in turn,

gives M = 2, hence we set the tanh-coth assumption by
ux, 1, 2) = 0(8) = ag(t, 2) + a1 (¢, 2)Y(2) + ag(t, 2)Y>(2)

+bi(t, 2)YTH(E) + byt )Y 2(E),

, 2.3)
ox, 1, 2) = ¥(&) = aglt, 2) + a1t 2)Y(8) + as(t, 2)Y ()

+ (2, 2)Y () + byt 2)Y 2(E),
where Y (&) satisfies the Riccati equation (1.5).

Substituting (2.3) into (2.2) and using (1.5), collecting the coefficients

of Y, all coefficients of Y” have to vanish, these yields a system of
algebraic equations in ap, ci(k = 0, 1, 2), by, dp(k = 1, 2), and ¢ of

the form
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slGY + kpCd + kqll + k?’rK(()p =0,

s(GY + kpCy + kql + k?’rKfO =0,

s(GY + kpCd + kqGh + k3rK§’ =0,

s(G + kpCd + kqlh + kSrKép =0,

StH? + kpn? + kqn? + E3rL? = 0,

SCHY + kpng + kqn}, + kSrLg =0,

stH + kpng + kqng + k?’rL(g =0,

kpCQ + kqCh + k3K = 0,

kpCe + kqCl + KPrKy

0,

kpn + kqn', + R*rLY = 0,

kpn® + kqnb + kLS = 0, (2.4)
and

stGY + RPKY — 3kpg = 0,

stGY + EPKY — 3kpy = 0,

s(GY + kP Kb — 3kpy = 0,

s(GY + RPKY — 3kpy = 0,

stHY + E*LY — 3ka, = 0,

stHY + R2LY - 3khg = 0, (2.5)
stHY + k3LY - 3khg = 0,

k?KY —3p, =0,

R2KY - 3p5 = 0,

R2LY) — 314 = 0,

2
k*LL - 305 = 0,
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G§ = aaqy —vby, GY = 20ag +Bay, GJ = 2Bay + yay, GJ = 2yas,
Gg = ac; — vdp, G{” = 20c9 + PBeq, GS = 2Bcy + yeq, G?“f = 2ycy,
H{p = —(2yby + Bby), Hép = —(2Bby + aby), H? = —2aby,

H = —(2vydy + Bdy), HY = —(2Bdy + ady), HY = —2ady,

K§ = o(20G$ + BGy )+ y(2vHS + BHY ),

K? =2a(30GS + 23 + G ) + B(20GJ +BGY),

KJ = 3a(3BGS +2YGg ) + 2B(3aGY + 2BGS +vG) ) + y(20G + BGY),
K = 2v(30Gq + 2BGJ +vG; ) + 3B(3BGY + 2YGF ) + 120Gy,

K? = 3y(38GY + 2yGY) +128yGY, K? =12/°GY,

K} = a(20GY + BG) )+ v(2yHY + BH) ),
K{ = 2a(30GY + 2BGY + G} ) + B(20GY + BGY),

K} = 3a(3BGY +2yGY) + 2B(3a.GY + 2BGY +yGY ) + v(2% + BGY ),

K} = 2y(3aG}Y + 2BGY +vGY ) + 3B(3BGY + 2YGY) + 1208,

KY = 3y(3BGY + 2¢GY) +12ByGY, KY =12y°GY,

LY = 2y(3yH$ + 2BHS + aHY ) + B(25 + BHY ),

L = 3y(3BHS + 20Hg ) + 2B(3yHS + 2BHg + oH ) + a(2yHJ + BHY ),

L{ = 20(3yH3 + 2BHJ + oH{ )+ 3B(3pHS + 20HJ ) + 120yHY,



Po

P1

P2
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= 30(3% + 20HY) + 1280 HS, LY = 1202HY,
= 2hy(3YHY + 2BHY + oHY ) + B(2yHY + BHY),
= 3y(3BHY + 20HY) + 2B(3yHY + 2BHY + oH} )+ a(2yH} + HY ),
= 20(3yH} + 28HY + oH )+ 3B(3BHY + 20.HY ) + 120yHY,
= 3a(3BHY + 20HY ) + 12BaHY,
=1202HY, ¢ = agGY + o HY + agHY + bGP + byGY,
= oGy + 1G] + agH + bjGJ + byGY,
= a0G3 + ,GY + ayGy + bGF, C§ = agG§ + ;G + ayGY,
= ;G + a9GY, (2 = ayGY,
= aoH{ + a1HJ + agHS + bjGJ + byGY,

= aoHS + a1 H + by,G§ + b HY, n§ = agHS + bjHJ + byHY,

biH +byHY, 0 =byHY, () = coGY + e HY + coHY + diGY + dyGY,
=coG] + G} + coHY + d1GY +doGY, Y = coGY +1GY +cyGh + d G,
= cOGg + chg + cQGf, Cﬁ = chg + 02G2w, Cg = chg,

=coH} +c;HY + coHYd GY + doGY, m) = coHY + ¢ HY + dyGY + d HY

= coHY + diHY + dyH}, WY, = dyHY + dyHY, n¢ = dyHY,

aoGY + a HY + agHY + 5G] + byGY,

_ 14 Y 14 14 14
= a0G1 + alGO + Clel + b1G2 + b2G3,

aoGY + a1GY + ayGY + b1GY, p3 = apGY + a1GY + ayGY,
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Py = ale + ang, ps = a2G§, M= aOH{” + ang + azHg +b1Gg +b2Gw,
Ay = agHY + ayHY + b H} + byGY, L3 = agHY + by HY + byHY,

Ay = biHY + byHY, A5 = byHY.

Case I. If we set a =B =1,y =0 in (1.5), and use Mathematica to

solve the resulting system, we will obtain the following set of solutions:

ay =a; = a9 =¢ = ¢y = 0,

k*(10p + 30r — 3(p + 3r)) - 12

b = ; V0 by = ak?, dy = 2 (- 3Jq0; +0y),
2k“(p + 3r) q
g 4o 114/g0,(5 + 11p — 7r — pr + 2r%) + 505(5 + p — 7r + pr)
2 = =Y1,¢00 = ’
Jg 16(5p + p? + 157 + pr — 6r?)
3.2

and / = —k°p , where 0; = ik2\[(p + 3r), 05 = ixJa(p + 3r), ¢ > 0, and
p+3r>0.

Substituting these valuesin (2.3) and Y = et — 1, we obtain functional
solutions of exponential type

TR, 2) + 3r(t, 2)] - n2)alz)
up(x, ¢, z) = { Vot 2)

2k2[p(t, 2) + 3r(t, 2)]

[ eXp[EA(x, ¢ Z)] - ]-] + 4k2 }

{ exp[c‘,l(x, , Z)] - 1}_27 (26)

v (x, ¢, 2)

_ [11Vq(¢, 2)01(t, 2) + 504(¢, 2)][6 + p(t, 2) — [T + p(¢, 2) + 2r(t, 2)|r(t, 2)]
16q(t, 2)[5p(t, z) + (@, 2) + 157(¢, 2) + p(t, 2)r(t, z) — 6r2(¢, 2)]

— L= 3JaE 20010, 2) + 0200, 2)][ exples (v, 1, 2)] 1]

qt, z
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4

- W el(t’ Z)}{ exp[él('x’ 2 Z)] - 1}_2’ (2-7)

with

t p*(r, 2)
x, t, z :kx—k3‘[ P\L2) g e,
‘il( ) 0 q(T’z) T 1

Case II. If we set o :%, B=0, and y = —%, in (1.5), and use

Mathematica to solve the resulting system, we will obtain the following
set of solutions:

k2r[13p — 3kp + 10kq]
2plp + kq]

a1:a2:b1:01:02:d1:(),(10:

’

-3k c 3k2r ~ 3k3(k-1)p

= ;¢ =—,and [ = , where pq # 0.
p+ke’ 0 ¢ 2s(p + kq)

by = —dy

Substituting these values in (2.3), Y(£) = coth(&) + csch(g) and Y()
= tanh(§) + i sech(§), we obtain functional solutions of hyperbolic type

k2r(t, 2)[(13 - 3k)p(t, z) + 10kq(t, 2)] B 3k3r(t, 2)
2p(t, 2)[p(t, 2) + kq(t, 2)] plt, 2) + kq(t, 2)

us(x, ¢, z) =

{ coth[¢,(x, t, 2)] + csch[Eq(x, ¢, 2)]} 72, (2.8)

k2r(t, 2)[(13 - 3k)p(t, ) + 10kq(t, 2)] 3k3r(t, 2)

ug(x, t, 2) = 2p(t, 2) [p(t, 2) + kq(t, 2)] - Pt 2) + kat, 2)

{tanh[¢,(x, t, 2)] + i sech[Ey(x, ¢, 2)]} 72, (2.9

3k2r(t, 2) N 3k3r(t, 2)
qt,z)  p(t, 2) + kq(t, 2)

vo(x, ¢, 2) =

{ coth[¢,(x, t, 2)] + csch[Eq(x, ¢, 2)]} 72, (2.10)

3k2r(t, 2) 3k3r(t, 2)

v3(x, ¢, 2) = at, 2) Pt 2)+ kalt, 2)
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{ tanh[Ey(x, t, 2)] £ i sech[E5(x, ¢, 2)]}_2, (2.11)
where

‘ (v, 2)p(r, 2)dr
0 p(T’ Z) + kQ(T’ 2) Z

Eolx, t, 2) = kx + %kg(k —1)J.

Case III. If we set a=1,=0, and y =1, in (1.5), and use

Mathematica to solve the resulting system, we will obtain the following

set of solutions:

. .9
iq 2ik“(1 - 4k)
GO:a2:b1=b2202=d1=d2:0,alz—6,002—,
vpq v pq
- 2k3p . .
¢ =9, and ¢ = g where 8 is an arbitrary constant and pg > 0.

Substituting these values in (2.3), Y(§) = tan(§) and Y(§) = — cot(€),

we obtain functional solutions of trigonometric type

iq(t, )5

m tan[&s(x, ¢, 2)],

iq(t, )5

Vp(t, 2)q(t, 2)

2ik>(1 - 4k)

Vplt, 2)q(t, 2)

2ik%(1 — 4k)

Vp(t, 2)q(t, 2)

uy(x, t, 2) = (2.12)

us(x, t, z2) = - cot[&5(x, ¢, 2)], (2.13)

vy(x, t, 2) = + 3 tan[5(x, ¢, 2)], (2.14)

vs(x, t, 2) = - 3 cot[ég(x, t, 2)], (2.15)

where

t
2 _op3[lplT 2)
Esl(x, ¢, z) = kx — 2k Jo oG 2) drt +c.

Case IV. If we set a=1,=0, and y =4, in (1.5), and use

Mathematica to solve the resulting system, we will obtain the following

set of solutions:
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aq Zbl =b2 =C = Cp Idl =d2 20,

2 32 k 4093 B 9
=kl gy (167~ 5gq P a2 = 6487,
2 [6(683p + 2048r) RS 4093
k \/ 7 , and ( = FF)] [48r 158 ol

where ¢ # 0 and 683p + 2048r /q > 0.

Substituting these values in (2.3), Y (&) = %cot(Zé) and Y(&§)= %tan(Z&),

we obtain functional solutions of quadratic trigonometric type

2,82 k 4093
ug(x, t, z) = k*{ 5 " 3T 2 Folt. 2) [16r(t, z) - ETYR — p(t, 2)]}
+16k2 cot?[2¢4(x, t, 2)], (2.16)
9,32 k 4093
LL7(3C, t, Z) =k {? + m[lGr(t, Z) 384 p(t )]}
+16k% tan?[2¢4(x, t, 2)], (2.17)
vg(x, t, z) = L]Z \/ [683p(t. 22:22)0487"(@ 2)l cot?[28,4(x, t, 2)], (2.18)
92
vr(x, t, 2) = %\/ [683p(. 22t+22)048r(t 2)] an?[2¢,(x, ¢, 2)], (2.19)
where

Eqlx, t, z):kx+ 3J [48r(, 2) - 128 p(T z)]dT +c.

Lemma 2.1 [9]. Suppose u(x, t, z) is a solution (in the usual strong,
pointwise sense) of Equation (2.1) for (x,t) in some bounded open set
G c RxR,, and for all z € K,,(n) for some m and n. Moreover, suppose
that u(x, t, z) and all its partial derivatives, which are involved in
Equation (2.1), are (uniformly) bounded for (x,t,z)e GxK,,(n),

continuous with respect to (x, t) € G for all z € K,,(n) and analytic with
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respect to z € K,,(n) for all (x,t) € G. Then, there exists U(x, t) € (S)_

such that u(x, t, z) = U(x, t)(2) for all (x,t, z) € G x K,,(n) and U(x, t)
solves (in the strong sense in (S)_; ) Equation (1.6) in (S)_;.

From Lemma 2.1, we know that there exists U(x, t) € (S)_; such that

ulx, t, z) = Ulx, t)(z) for all (x, ¢, z) € G x K,,(n), where Ul(x, t) is the
inverse Hermite transformation of u(x, ¢, z). Consequently, Ulx, t)

solves Equation (1.6), therefore, the white noise functional solutions of

(1.6) are as follows:
2.1. White noise functional solutions of exponential type

For Q(¢) > 0 and P(¢) + 3R(t) > 0, we have that the solutions of (1.6)

are the following:

Ur(a, 1) = ([T [P0 + 3R] - 0,0 0300 Q) o [ [P(0) + 3R] V]
o[ exp °[E;(x, t)] - 1] + 4k%} o { exp °[E; (x, t)] -1} 2, (2.20)

Vit 0) = = [110° 2 (41)0 @, () + 505()] 0 [5 + Pt) - [7 + P(t) + 2R() + 2R(2)]
o R(t)]o @ °“V(t)o [5P(t) + P°2(t) + 15R(t) + P(t) o R(?)
6RO + 2000 [ - 3" ()0 04¢) + 050)

o[exp®[=1(x, 1)~ 11- 4Q°2(0)0 ©,0)) o exp[E4 x, )] - 1172,

(2.21)

with ©,(t) = ik2[P(t) + 3R)]"(2), @5(t) = ik2[Q(t) o (P(t) + 3R())(Z),

and

t o
E(x, t, 2) = kx — kSI P (r, 2)0 @I (r, 2)dr + ¢
0
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2.2. White noise functional solutions of hyperbolic type

For P(t)oQ(t) # 0, we have that the solutions of (1.6) are the

following:
Un(x, 2) = £ F*R() o [13 - 3L)P(0) + 10kQ()] o [P*%(2) + kP(t) o Q)Y

- 3k3R(t) o [P(t) + k QI

o { coth®[Zy(x, ¢)] £ csch®[Eq(x, )12, (2.22)
Us(x, 2) = 5 K2R() o [13 - 36)P() + 10kQ()] 0 [P (2) + kP(t) o Q)"

- 3k3R(t) o [P() + k QI

o {tanh®[Z4(x, ¢)] + i sech®[Z5(x, 1)]}*2, (2.23)
Va(x, t) = 3k7R(t) o Q)°V(0) + 3k>R(t) o [P(t) + k Q)

o { coth®[E5(x, t)] £ csch®[Eg(x, )12, (2.24)
Vs(x, t) = 3k7R() o Q)°TV(0) + 3k>R(e) o [P(1) + kQW)ITY

o {tanh®[Zy(x, ¢)] + i sech®[Zy(x, 1)]}1°2, (2.25)

with

2ol 1) =k + SE =) R(7)o P(3) o [P) + QP Var +

2.3. White noise functional solutions of trigonometric type

For P(t)oQ() > 0, we have that the solutions of (1.6) are the

following:

Uy (x, £) = 8iQ(t) o [P() o Q)2 tan®[Z5(x, 1)), (2.26)
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Us(x, t) = - 8iQ(t) o [P(t) o @O)Z) cot[E5(x, )], (2.27)
V,(x, t) = 2ik%(1 - 4k)[P(t) » Q)" ) 15 tan®[Z5(x, t)], (2.28)
Vi(x, ) = 2ik2(1 = 4k)[P(t) o Q)12 = 5 cot®[Z5(x, £)],  (2.29)
with
=406, 1, 2) = hx kSJ;P(T, 2)0 Q@ V(r, 2)dr + c5.

2.4. White noise functional solutions of quadratic trigonometric type

For Q(t) # 0 and [683P(t) + 2048R(1)]Q°1(t) > 0, we have that the

solutions of (1.6) are the following:

4093

Us(x, t) = kz{ + K3+ POIY 0 [16R() - 22 PO)])
+16k% cot°2[28,(x, t)], (2.30)
Uy(x, €)= K2{ 5 + k(3 + kPO 0 [16R0) - 527 PO
+16k2% tan®2[25,(x, t)], (2.31)
Ve, £) = ‘/_‘k [683P(¢) + 2048R(1)"Z) 0 @(1)°"3) o cot°2[22,,(x, 1)),
(2.32)
Valx, t) = “/_Lk [683P(¢) + 2048R(1)]”2) 0 @(1)°"2) o tan®2[22, (, 1)),

(2.33)

with
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- _ kSt 4093
2, 8) = b+ jo [48R(r) - 52 P(1)]d7 + 5.

We observe that for different forms of P(t), Q(t), and R(¢), we can
get different solutions of (1.6) from (2.20)-(2.33).

3. Remark

Let W() = B(t) be the Gaussian white noise, where B(t) is the

t

Brownian motion. We have the Hermite transform W(t, z) = Z:l Zijo

n;(s)ds. Since exp®[B(t)] = exp[B(t) -t /2], we have tan®[B(t)] = tan

[
[B(t) - t? / 2], cot®[B(t)] = cot[B(t) — t? / 2], tanh®[B(¢)] = tanh[B() - t2 / 2],
coth®[B(t)] = coth[B(t) — t2 / 2], sech®[B(t)] = sech[B(t) - t* / 2], and
]

csch®[B(t)] = esch[B(t) — ¢? / 2]. Suppose P(t) = R(t) = 6;Q(t) and Q(t)
= q(t) + cyW(t), where o; and o, are arbitrary constants and q(t) is
integrable or bounded measurable function on R,. The white noise

functional solutions of (1.6) are as follows:

_ 14k(1 - k) (exp [Ty (x, )] - 1) + 47

Ug/(x, ; (3.1)
. (explrie. 0] 17
Vs(x, t) = 8ik® oy {[20 - 3607 ][q(t) + oaW(t)] - 1207 [q(t) + oo W()]?
exp[rl(x’ t)]
_ (3.2)
(exp[Ty (x, £)] - 1)
with
M, 0) = ke~ of | g()d + 0yBlt) - "22t2 ]+,
0

_ E%[(18 - 3k)o; + 10k]  3k%oy
Ug(, 2) = 2(c; + k) oy + k
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{ coth[Iy(x, ¢)] + csch[Ty(x, t)]}, (3.3)

E*[(13 - 3k)o; + 10k]  3k%cy
2(01 + k) G + k

UIO(x’ t) =

{ tanh[Ty(x, t)] + i sech[Ty(x, t)]}, (3.4)

3
Vo(x, t) = 3k%0; + j’lk L { coth[Iy(x, 1)] + esch[Ty(x, 1)), (3.5)
3
Vio(x, t) = 3k%cy + 3f 9L { tanh[Ty(x, t)] + i sech[Ty (x, ¢)]}, (3.6)
with
213
Iy, ) = b + M [I a(r)dr + 03B(t) - %2 14 ¢y,
Upi(x, t) = \/SL tan[[5(x, t)], 3.7
o1
Uys(x, t) = —%icot[l“g(x, 1), 3.8)
G1
_ 2ik%(1 - 4k) N
Vii(x, t) = E[q(t) o W] + 8 tan[Ty(x, )], (3.9)
_ o 2ik*-4k)
Via(x, t) = To 1a0) 2 oo W] S cot[Ty(x, t)], (3.10)
with

F3(x, t) = kx - 2k301t + C3,

3 204501 k[q(t) + oW (t)]
Uiy, 1) = kQ{? ~ 3+ oy a0 5 oo W0)]

} +16k2 cot?[2T, (x, t)],

(3.11)
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B 32  20450,k[q(t) + coW(t)]
Ura(x, 8) = k2{? B kolgll) + 0 W]

} +16k2 tan?[2ry (x, t)],

(3.12)
Vig(x, t) = %Mcotz[ﬂ](x, t)], (3.13)
Vig(x, t) = % 163860, tanZ[2I,(x, t)], (3.14)
with
Ty(x, t) = kx + % [J.(:q(’l')d’l' + c9B(t) - 02;2 ]+ cy.

4. Summary and Discussion

We have discussed the solutions of SPDEs driven by Gaussian white
noise. There is a unitary mapping between the Gaussian white noise
space and the Poisson white noise space. This connection was given by
Benth and Gjerde [1]. We can see in the Subsection 4.9 [9] clearly. Hence,
by the aid of the connection, we can derive some stochastic exact soliton
solutions if the coefficients P(¢), @(t), and R(t) are Poisson white noise

functions in Equation (1.6). In this paper, using Hermite transformation,
white noise theory, and modified tanh-coth method, we study the white
noise solutions of the Wick-type stochastic coupled KdV equations. This
paper shows that the modified tanh-coth method is sufficient to solve the
stochastic nonlinear equations in mathematical physics. The method
which we have proposed in this paper 1s standard, direct, and
computerized method, which allows us to do complicated and tedious
algebraic calculation. It is shown that the algorithm can be also applied to
other NLPDEs in mathematical physics such as modified Hirota-Satsuma
coupled KdV, KdV-Burgers, modified KdV-Burgers, Sawada-Kotera,
Zhiber-Shabat equations, and Benjamin-Bona-Mahony equations. Since

the Riccati equation has other solutions if select other values of a, B, and
vy, there are many other exact solutions of variable coefficients and Wick-

type stochastic coupled KdV equations.
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